On Replicability: Why We Don’t Celebrate Viking Day

I was recently in Oslo, Norway’s capital, and visited a wonderful museum displaying three Viking ships that had been buried with important people. The museum had all sorts of displays focused on the amazing exploits of Viking ships, always including the Viking landings in Newfoundland, about 500 years before Columbus. Since the 1960s, most people have known that Vikings, not Columbus, were the first Europeans to land in America. So why do we celebrate Columbus Day, not Viking Day?

Given the bloodthirsty actions of Columbus, easily rivaling those of the Vikings, we surely don’t prefer one to the other based on their charming personalities. Instead, we celebrate Columbus Day because what Columbus did was far more important. The Vikings knew how to get back to Newfoundland, but they were secretive about it. Columbus was eager to publicize and repeat his discovery. It was this focus on replication that opened the door to regular exchanges. The Vikings brought back salted cod. Columbus brought back a new world.

In educational research, academics often imagine that if they establish new theories or demonstrate new methods on a small scale, and then publish their results in reputable journals, their job is done. Call this the Viking model: they got what they wanted (promotions or salt cod), and who cares if ordinary people found out about it? Even if the Vikings had published their findings in the Viking Journal of Exploration, this would have had roughly the same effect as educational researchers publishing in their own research journals.

Columbus, in contrast, told everyone about his voyages, and very publicly repeated and extended them. His brutal leadership ended with him being sent back to Spain in chains, but his discoveries had resounding impacts that long outlived him.

blog_11-21-19_vikingship_500x374

Educational researchers only want to do good, but they are unlikely to have any impact at all unless they can make their ideas useful to educators. Many educational researchers would love to make their ideas into replicable programs, evaluate these programs in schools, and if they are found to be effective, disseminate them broadly. However, resources for the early stages of development and research are scarce. Yes, the Institute of Education Sciences (IES) and Education Innovation Research (EIR) fund a lot of development projects, and Small Business Innovation Research (SBIR) provides small grants for this purpose to for-profit companies. Yet these funders support only a tiny proportion of the proposals they receive. In England, the Education Endowment Foundation (EEF) spends a lot on randomized evaluations of promising programs, but very little on development or early-stage research. Innovations that are funded by government or other funding very rarely end up being evaluated in large experiments, fewer still are found to be effective, and vanishingly few eventually enter widespread use. The exceptions are generally programs crated by large for-profit companies, large and entrepreneurial non-profits, or other entities with proven capacity to develop, evaluate, support, and disseminate programs at scale. Even the most brilliant developers and researchers rarely have the interest, time, capital, business expertise, or infrastructure to nurture effective programs through all the steps necessary to bring a practical and effective program to market. As a result, most educational products introduced at scale to schools come from commercial publishers or software companies, who have the capital and expertise to create and disseminate educational programs, but serve a market that primarily wants attractive, inexpensive, easy-to-use materials, software, and professional development, and is not (yet) willing to pay for programs proven to be effective. I discussed this problem in a recent blog on technology, but the same dynamics apply to all innovations, tech and non-tech alike.

How Government Can Promote Proven, Replicable Programs

There is an old saying that Columbus personified the spirit of research. He didn’t know where he was going, he didn’t know where he was when he got there, and he did it all on government funding. The relevant part of this is the government funding. In Columbus’ time, only royalty could afford to support his voyage, and his grant from Queen Isabella was essential to his success. Yet Isabella was not interested in pure research. She was hoping that Columbus might open rich trade routes to the (east) Indies or China, or might find gold or silver, or might acquire valuable new lands for the crown (all of these things did eventually happen). Educational research, development, and dissemination face a similar situation. Because education is virtually a government monopoly, only government is capable of sustained, sizable funding of research, development, and dissemination, and only the U.S. government has the acknowledged responsibility to improve outcomes for the 50 million American children ages 4-18 in its care. So what can government do to accelerate the research-development-dissemination process?

  1. Contract with “seed bed” organizations capable of identifying and supporting innovators with ideas likely to make a difference in student learning. These organizations might be rewarded, in part, based on the number of proven programs they are able to help create, support, and (if effective) ultimately disseminate.
  2. Contract with independent third-party evaluators capable of doing rigorous evaluations of promising programs. These organizations would evaluate promising programs from any source, not just from seed bed companies, as they do now in IES, EIR, and EEF grants.
  3. Provide funding for innovators with demonstrated capacity to create programs likely to be effective and funding to disseminate them if they are proven effective. Developers may also contract with “seed bed” organizations to help program developers succeed with development and dissemination.
  4. Provide information and incentive funding to schools to encourage them to adopt proven programs, as described in a recent blog on technology.  Incentives should be available on a competitive basis to a broad set of schools, such as all Title I schools, to engage many schools in adoption of proven programs.

Evidence-based reform in education has made considerable progress in the past 15 years, both in finding positive examples that are in use today and in finding out what is not likely to make substantial differences. It is time for this movement to go beyond its early achievements to enter a new phase of professionalism, in which collaborations among developers, researchers, and disseminators can sustain a much faster and more reliable process of research, development, and dissemination. It’s time to move beyond the Viking stage of exploration to embrace the good parts of the collaboration between Columbus and Queen Isabella that made a substantial and lasting change in the whole world.

This blog was developed with support from the Laura and John Arnold Foundation. The views expressed here do not necessarily reflect those of the Foundation.

A Powerful Hunger for Evidence-Proven Technology

I recently saw a 1954 video of B. F. Skinner showing off a classroom full of eager students using teaching machines. In it, Skinner gave all the usual reasons that teaching machines were soon going to be far superior to ordinary teaching: They were scientifically made to enable students to experience constant success in small steps. They were adapted to students’ needs, so fast students did not need to wait for their slower classmates, and the slower classmates could have the time to solidify their understanding, rather than being whisked from one half-learned topic to the next, never getting a chance to master anything and therefore sinking into greater and greater failure.

Here it is 65 years later and “teaching machines,” now called computer-assisted instruction, are ubiquitous. But are they effective? Computers are certainly effective at teaching students to use technology, but can they teach the core curriculum of elementary or secondary schools? In a series of reviews in the Best Evidence Encyclopedia (BEE; www.bestevidence.org), my colleagues and I have reviewed research on the impacts of technology-infused methods on reading, mathematics, and science, in elementary and secondary schools. Here is a quick summary of my findings:

Mean Effect Sizes for Technology-Based Programs in Recent Reviews
Review Topic No. of Studies Mean Effect Size
Inns et al., in preparation Elementary Reading 23 +0.09
Inns et al., 2019 Struggling Readers 6 +0.06
Baye et al., 2018 Secondary Reading 23 -0.01
Pellegrini et al., 2019 Elementary Mathematics 14 +0.06

If you prefer “months of learning,” these are all about one month, except for secondary reading, which is zero. A study-weighted average across these reviews is an effect size of +0.05. That’s not nothing, but it’s not much. Nothing at all like what Skinner and countless other theorists and advocates have been promising for the past 65 years. I think that even the most enthusiastic fans of technology use in education are beginning to recognize that while technology may be useful in improving achievement on traditional learning outcomes, it has not yet had a revolutionary impact on learning of reading or mathematics.

How can we boost the impact of technology in education?

Whatever you think the effects of technology-based education might be for typical school outcomes, no one could deny that it would be a good thing if that impact were larger than it is today. How could government, the educational technology industry, researchers in and out of ed tech, and practicing educators work together to make technology applications more effective than they are now?

In order to understand how to proceed, it is important to acknowledge a serious problem in the world of ed tech today. Educational technology is usually developed by commercial companies. Like all commercial companies, they must serve their market. Unfortunately, the market for ed tech products is not terribly interested in the evidence supporting technology-based programs. Instead, they tend to pay attention to sales reps or marketing, or they seek opinions from their friends and colleagues, rather than looking at evidence. Technology decision makers often value attractiveness, ease of use, low cost, and current trends or fads, over evidence (see Morrison, Ross & Cheung, 2019, for documentation of these choice strategies).

Technology providers are not uncaring people, and they want their products to truly improve outcomes for children. However, they know that if they put a lot of money into developing and researching an innovative approach to education that happens to use technology, and their method requires a lot of professional development to produce substantially positive effects, their programs might be considered too expensive, and less expensive products that ask less of teachers and other educators would dominate the sector. These problems resemble those faced by textbook publishers, who similarly may have great ideas to increase the effectiveness of their textbooks or to add components that require professional development. Textbook designers are prisoners of their markets just as technology developers are.

The solution, I would propose, requires interventions by government designed to nudge education markets toward use of evidence. Government (federal, state, and local) has a real interest in improving outcomes of education. So how could government facilitate the use of technology-based approaches that are known to enhance student achievement more than those that exist today?

blog_5-24-18_DistStudents_500x332

How government could promote use of proven technology approaches

Government could lead the revolution in educational technology that market-driven technology developers cannot do on their own. It could do this by emphasizing two main strategies: providing funding to assist technology developers of all kinds (e.g., for-profit, non-profit, or universities), providing encouragement and incentives to motivate schools, districts, and states to use programs proven effective in rigorous research, and funding development, evaluation, and dissemination of proven technology-based programs.

Encouraging and incentivizing use of proven technology-based programs

The most important thing government must do to expand the use of proven technology-based approaches (as well as non-technology approaches) is to build a powerful hunger for them among educators, parents, and the public at large. Yes, I realize that this sounds backward; shouldn’t government sponsor development, research, and dissemination of proven programs first? Yes it should, and I’ll address this topic in a moment. Of course we need proven programs. No one will clamor for an empty box. But today, many proven programs already exist, and the bigger problem is getting them (and many others to come) enthusiastically adopted by schools. In fact, we must eventually get to the point where educational leaders value not only individual programs supported by research, but value research itself. That is, when they start looking for technology-based programs, their first step would be to find out what programs are proven to work, rather than selecting programs in the usual way and only then trying to find evidence to support the choice they have already made.

Government at any level could support such a process, but the most likely leader in this would be the federal government. It could provide incentives to schools that select and implement proven programs, and build off of this multifaceted outreach efforts to build hype around proven approaches and the idea that approaches should be proven.

A good example of what I have in mind was the Comprehensive School Reform (CSR) grants of the late 1990s. Schools that adopted whole-school reform models that met certain requirements could receive grants of up to $50,000 per year for three years. By the end of CSR, about 1000 schools got grants in a competitive process, but CSR programs were used in an estimated 6000 schools nationwide. In other words, the hype generated by the CSR grants process led many schools that never got a grant to find other resources to adopt these whole school programs. I should note that only a few of the adopted programs had evidence of effectiveness; in CSR, the core idea was whole-school reform, not evidence (though some had good evidence of effectiveness). But a process like CSR, with highly visible grants and active support from government, illustrates a process that built a powerful hunger for whole-school reform, which could work just as well, I think, if applied to building a powerful hunger for proven technology-based programs and other proven approaches.

“Wait a minute,” I can hear you saying. “Didn’t the ESSA evidence standards already do this?”

This was indeed the intention of ESSA, which established “strong,” “moderate,” and “promising” levels of evidence (as well as lower categories). ESSA has been a great first step in building interest in evidence. However, the only schools that could obtain additional funding for selecting proven programs were among the lowest-achieving schools in the country, so ordinary Title I schools, not to mention non-Title I schools, were not much affected. CSR gave extra points to high-poverty schools, but a much wider variety of schools could get into that game. There is a big different between creating interest in evidence, which ESSA has definitely done, and creating a powerful hunger for proven programs. ESSA was passed four years ago, and it is only now beginning to build knowledge and enthusiasm among schools.

Building many more proven technology-based programs

Clearly, we need many more proven technology-based programs. In our Evidence for ESSA website (www.evidenceforessa.org), we list 113 reading and mathematics programs that meet any of the three top ESSA standards. Only 28 of these (18 reading, 10 math) have a major technology component. This is a good start, but we need a lot more proven technology-based programs. To get them, government needs to continue its productive Institute for Education Sciences (IES) and Education Innovation Research (EIR) initiatives. For for-profit companies, Small Business Innovation Research (SBIR) plays an important role in early development of technology solutions. However, the pace of development and research focused on practical programs for schools needs to accelerate, and to learn from its own successes and failures to increase the success rate of its investments.

Communicating “what works”

There remains an important need to provide school leaders with easy-to-interpret information on the evidence base for all existing programs schools might select. The What Works Clearinghouse and our Evidence for ESSA website do this most comprehensively, but these and other resources need help to keep up with the rapid expansion of evidence that has appeared in the past 10 years.

Technology-based education can still produce the outcomes Skinner promised in his 1954 video, the ones we have all been eagerly awaiting ever since. However, technology developers and researchers need more help from government to build an eager market not just for technology, but for proven achievement outcomes produced by technology.

References

Baye, A., Lake, C., Inns, A., & Slavin, R. (2019). Effective reading programs for secondary students. Reading Research Quarterly, 54 (2), 133-166.

Inns, A., Lake, C., Pellegrini, M., & Slavin, R. (2019). A synthesis of quantitative research on programs for struggling readers in elementary schools. Available at www.bestevidence.org. Manuscript submitted for publication.

Inns, A., Lake, C., Pellegrini, M., & Slavin, R. (in preparation). A synthesis of quantitative research on elementary reading. Baltimore, MD: Center for Research and Reform in Education, Johns Hopkins University.

Morrison, J. R., Ross, S.M., & Cheung, A.C.K. (2019). From the market to the classroom: How ed-tech products are procured by school districts interacting with vendors. Educational Technology Research and Development, 67 (2), 389-421.

Pellegrini, M., Inns, A., Lake, C., & Slavin, R. (2019). Effective programs in elementary mathematics: A best-evidence synthesis. Available at www.bestevidence.com. Manuscript submitted for publication.

This blog was developed with support from the Laura and John Arnold Foundation. The views expressed here do not necessarily reflect those of the Foundation.

Nobel Experiments

The world of evidence-based policy just got some terrific news. Abhijit Banerjee and Esther Duflo, of MIT, and Michael Kremer of Harvard, were recently awarded the Nobel Prize in economics.

This award honors extraordinary people doing extraordinary work to alleviate poverty in developing countries. I heard Esther Duflo speak at the Society for Research on Effective Education, and saw her amazing Ted Talk on the research that won the Nobel (delivered before they knew this was going to happen). I strongly suggest you view her speech, at https://www.ted.com/talks/esther_duflo_social_experiments_to_fight_poverty?language=en

But the importance of this award goes far beyond its recognition of the scholars who received it. It celebrates the same movement toward evidence-based policy represented by the Institute for Education Sciences, Education Innovation Research, the Arnold Foundation, and others in the U.S., the Education Endowment Foundation in the U.K., and this blog. It also celebrates the work of researchers in education, psychology, sociology, as well as economics, who are committed to using rigorous research to advance human progress. The Nobel awardees represent the international development wing of this movement, largely funded by the World Bank, the InterAmerica Development Bank, and other international aid organizations.

In her Ted Talk, Esther Duflo explains the grand strategy she and her colleagues pursue. They take major societal problems in developing countries, break them down into solvable parts, and then use randomized experiments to test solutions to those parts. Along with Dr. Banerjee (her husband) and Michael Kremer, she first did a study that found that ensuring that students in India had textbooks made no difference in learning. They then successfully tested a plan to provide inexpensive tutors and, later, computers, to help struggling readers in India (Banerjee, Cole, Duflo, & Linden, 2007). One fascinating series of studies tested the cost-effectiveness of various educational treatments in developing countries. The winner? Curing children of intestinal worms. Based on this and other research, the Carter Foundation embarked on a campaign that has virtually eradicated Guinea worm worldwide.

blog_11-7-19_classroomIndia_500x333

Dr. Duflo and her colleagues later tested variations in programs to provide malaria-inhibiting bed nets in developing countries in which malaria is the number one killer of children, especially those less than five years old. Were outcomes best if bed nets (retail cost= $3) were free, or only discounted to varying degrees? Many economists and policy makers worried that people who paid nothing for bed nets would not value them, or might use them for other purposes. But the randomized study found that without question, free bed nets were more often obtained and used than were discounted ones, potentially saving thousands of children’s lives.

For those of us who work in evidence-based education, the types of experiments being done by the Nobel laureates are entirely familiar, even though they have practical aspects quite different from the ones we encounter when we work in the U.S. or the U.K., for example. However, we are far from a majority among researchers in our own countries, and we face major struggles to continue to insist on randomized experiments as the criterion of effectiveness. I’m sure people working in international development face equal challenges. This is why this Nobel Prize in economics means a lot to all of us. People pay a lot of attention to Nobel Prizes, and there isn’t one in educational research, so having a Nobel shared by economists whose main contribution is in the use of randomized experiments to solve questions of great practical and policy importance, including studies in education itself, may be the closest we’ll ever get to Nobel recognition for the principle espoused by many in applied research in psychology, sociology, and education, as it is by many economists.

Nobel Prizes are often used to send a message, to support important new developments in research as well as to recognize deserving researchers who are leaders in this area. This was clearly the case with this award. The Nobel announcement makes it clear how the work of the Nobel laureates has transformed their field, to the point that “their experimental research methodologies entirely dominate developmental economics.”  I hope this event will add further credibility and awareness to the idea that rigorous evidence is a key lever for change that matters in the lives of people

 

Reference

Banerjee, A., Cole, S., Duflo, E., & Linden, L. (2007). Remedying education: Evidence from two randomized experiments in India. The Quarterly Journal of Economics, 122 (3), 1235-1264.

 

This blog was developed with support from the Laura and John Arnold Foundation. The views expressed here do not necessarily reflect those of the Foundation.