Succeeding Faster in Education

“If you want to increase your success rate, double your failure rate.” So said Thomas Watson, the founder of IBM. What he meant, of course, is that people and organizations thrive when they try many experiments, even though most experiments fail. Failing twice as often means trying twice as many experiments, leading to twice as many failures—but also, he was saying, many more successes.

blog_9-20-18_TJWatson_500x488
Thomas Watson

In education research and innovation circles, many people know this quote, and use it to console colleagues who have done an experiment that did not produce significant positive outcomes. A lot of consolation is necessary, because most high-quality experiments in education do not produce significant positive outcomes. In studies funded by the Institute for Education Sciences (IES), Investing in Innovation (i3), and England’s Education Endowment Foundation (EEF), all of which require very high standards of evidence, fewer than 20% of experiments show significant positive outcomes.

The high rate of failure in educational experiments is often shocking to non-researchers, especially the government agencies, foundations, publishers, and software developers who commission the studies. I was at a conference recently in which a Peruvian researcher presented the devastating results of an experiment in which high-poverty, mostly rural schools in Peru were randomly assigned to receive computers for all of their students, or to continue with usual instruction. The Peruvian Ministry of Education was so confident that the computers would be effective that they had built a huge model of the specific computers used in the experiment and attached it to the Ministry headquarters. When the results showed no positive outcomes (except for the ability to operate computers), the Ministry quietly removed the computer statue from the top of their building.

Improving Success Rates

Much as I believe Watson’s admonition (“fail more”), there is another principle that he was implying, or so I expect: We have to learn from failure, so we can increase the rate of success. It is not realistic to expect government to continue to invest substantial funding in high-quality educational experiments if the success rate remains below 20%. We have to get smarter, so we can succeed more often. Fortunately, qualitative measures, such as observations, interviews, and questionnaires, are becoming required elements of funded research, facilitating finding out what happened so that researchers can find out what went wrong. Was the experimental program faithfully implemented? Were there unexpected responses toward the program by teachers or students?

In the course of my work reviewing positive and disappointing outcomes of educational innovations, I’ve noticed some patterns that often predict that a given program is likely or unlikely to be effective in a well-designed evaluation. Some of these are as follows.

  1. Small changes lead to small (or zero) impacts. In every subject and grade level, researchers have evaluated new textbooks, in comparison to existing texts. These almost never show positive effects. The reason is that textbooks are just not that different from each other. Approaches that do show positive effects are usually markedly different from ordinary practices or texts.
  2. Successful programs almost always provide a lot of professional development. The programs that have significant positive effects on learning are ones that markedly improve pedagogy. Changing teachers’ daily instructional practices usually requires initial training followed by on-site coaching by well-trained and capable coaches. Lots of PD does not guarantee success, but minimal PD virtually guarantees failure. Sufficient professional development can be expensive, but education itself is expensive, and adding a modest amount to per-pupil cost for professional development and other requirements of effective implementation is often the best way to substantially enhance outcomes.
  3. Effective programs are usually well-specified, with clear procedures and materials. Rarely do programs work if they are unclear about what teachers are expected to do, and helped to do it. In the Peruvian study of one-to-one computers, for example, students were given tablet computers at a per-pupil cost of $438. Teachers were expected to figure out how best to use them. In fact, a qualitative study found that the computers were considered so valuable that many teachers locked them up except for specific times when they were to be used. They lacked specific instructional software or professional development to create the needed software. No wonder “it” didn’t work. Other than the physical computers, there was no “it.”
  4. Technology is not magic. Technology can create opportunities for improvement, but there is little understanding of how to use technology to greatest effect. My colleagues and I have done reviews of research on effects of modern technology on learning. We found near-zero effects of a variety of elementary and secondary reading software (Inns et al., 2018; Baye et al., in press), with a mean effect size of +0.05 in elementary reading and +0.00 in secondary. In math, effects were slightly more positive (ES=+0.09), but still quite small, on average (Pellegrini et al., 2018). Some technology approaches had more promise than others, but it is time that we learned from disappointing as well as promising applications. The widespread belief that technology is the future must eventually be right, but at present we have little reason to believe that technology is transformative, and we don’t know which form of technology is most likely to be transformative.
  5. Tutoring is the most solid approach we have. Reviews of elementary reading for struggling readers (Inns et al., 2018) and secondary struggling readers (Baye et al., in press), as well as elementary math (Pellegrini et al., 2018), find outcomes for various forms of tutoring that are far beyond effects seen for any other type of treatment. Everyone knows this, but thinking about tutoring falls into two camps. One, typified by advocates of Reading Recovery, takes the view that tutoring is so effective for struggling first graders that it should be used no matter what the cost. The other, also perhaps thinking about Reading Recovery, rejects this approach because of its cost. Yet recent research on tutoring methods is finding strategies that are cost-effective and feasible. First, studies in both reading (Inns et al., 2018) and math (Pellegrini et al., 2018) find no difference in outcomes between certified teachers and paraprofessionals using structured one-to-one or one-to-small group tutoring models. Second, although one-to-one tutoring is more effective than one-to-small group, one-to-small group is far more cost-effective, as one trained tutor can work with 4 to 6 students at a time. Also, recent studies have found that tutoring can be just as effective in the upper elementary and middle grades as in first grade, so this strategy may have broader applicability than it has in the past. The real challenge for research on tutoring is to develop and evaluate models that increase cost-effectiveness of this clearly effective family of approaches.

The extraordinary advances in the quality and quantity of research in education, led by investments from IES, i3, and the EEF, have raised expectations for research-based reform. However, the modest percentage of recent studies meeting current rigorous standards of evidence has caused disappointment in some quarters. Instead, all findings, whether immediately successful or not, should be seen as crucial information. Some studies identify programs ready for prime time right now, but the whole body of work can and must inform us about areas worthy of expanded investment, as well as areas in need of serious rethinking and redevelopment. The evidence movement, in the form it exists today, is completing its first decade. It’s still early days. There is much more we can learn and do to develop, evaluate, and disseminate effective strategies, especially for students in great need of proven approaches.

References

Baye, A., Lake, C., Inns, A., & Slavin, R. (in press). Effective reading programs for secondary students. Reading Research Quarterly.

Inns, A., Lake, C., Pellegrini, M., & Slavin, R. (2018). Effective programs for struggling readers: A best-evidence synthesis. Paper presented at the annual meeting of the Society for Research on Educational Effectiveness, Washington, DC.

Pellegrini, M., Inns, A., & Slavin, R. (2018). Effective programs in elementary mathematics: A best-evidence synthesis. Paper presented at the annual meeting of the Society for Research on Educational Effectiveness, Washington, DC.

 Photo credit: IBM [CC BY-SA 3.0  (https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

This blog was developed with support from the Laura and John Arnold Foundation. The views expressed here do not necessarily reflect those of the Foundation.

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s